corecrypto/ccrng/tools/ctr_drbg.py

191 lines
6.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) (2020) Apple Inc. All rights reserved.
#
# corecrypto is licensed under Apple Inc.s Internal Use License Agreement (which
# is contained in the License.txt file distributed with corecrypto) and only to
# people who accept that license. IMPORTANT: Any license rights granted to you by
# Apple Inc. (if any) are limited to internal use within your organization only on
# devices and computers you own or control, for the sole purpose of verifying the
# security characteristics and correct functioning of the Apple Software. You may
# not, directly or indirectly, redistribute the Apple Software or any portions thereof.
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
import hashlib
import binascii
import struct
RESEED_INTERVAL = 1 << 48
dec64 = lambda s: struct.unpack('>Q', s)[0]
enc64 = lambda i: struct.pack('>Q', i)
dec32 = lambda s: struct.unpack('>L', s)[0]
enc32 = lambda i: struct.pack('>L', i)
xor = lambda a,b: bytes([x^y for (x,y) in zip(a,b)])
class CTR_DRBG:
_OUTLEN = 16
_KEYLEN = 32
def _block_encrypt(self, key, value):
cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=default_backend())
encryptor = cipher.encryptor()
return encryptor.update(value) + encryptor.finalize()
def _bcc(self, K, data):
chaining_value = bytes(self._OUTLEN)
n = len(data) // self._OUTLEN
for i in range(0, n):
input_block = xor(chaining_value, data[i * self._OUTLEN:(i + 1) * self._OUTLEN])
chaining_value = self._block_encrypt(K, input_block)
return chaining_value
def _df(self, input_string, nbytes):
L = enc32(len(input_string))
N = enc32(nbytes)
S = L + N + input_string + b"\x80"
while len(S) % self._OUTLEN != 0:
S += b"\x00"
i = 0
temp = b""
K = bytes([x for x in range(0, self._KEYLEN)])
while len(temp) < self._KEYLEN + self._OUTLEN:
IV = enc32(i) + bytes(12)
temp = temp + self._bcc(K, IV + S)
i += 1
K = temp[:self._KEYLEN]
X = temp[self._KEYLEN:self._KEYLEN + self._OUTLEN]
temp = b""
while len(temp) < nbytes:
X = self._block_encrypt(K, X)
temp = temp + X
return temp[:nbytes]
def __init__(self, entropy, nonce, ps):
seed_material = entropy + nonce + ps
seed_material = self._df(seed_material, self._OUTLEN + self._KEYLEN)
self.V = bytes(self._OUTLEN)
self.K = bytes(self._KEYLEN)
self._update(seed_material)
self.reseed_counter = 1
def _update(self, provided_data):
temp = b""
seedlen = self._OUTLEN + self._KEYLEN
while len(temp) < seedlen:
nc = dec64(self.V[8:]) + 1
self.V = self.V[:8] + enc64(nc)
temp += self._block_encrypt(self.K, self.V)
temp = xor(temp[:seedlen], provided_data)
self.K = temp[:self._KEYLEN]
self.V = temp[-self._OUTLEN:]
def reseed(self, entropy, ai = b""):
seedlen = self._OUTLEN + self._KEYLEN
seed_material = entropy + ai
seed_material = self._df(seed_material, seedlen)
self._update(seed_material)
self.reseed_counter = 1
def generate(self, n, ai = b""):
seedlen = self._OUTLEN + self._KEYLEN
if not (self.reseed_counter <= RESEED_INTERVAL):
return None
if len(ai) != 0:
ai = self._df(ai, seedlen)
self._update(ai)
else:
ai = bytes(seedlen)
temp = b""
while len(temp) < n:
nc = dec64(self.V[8:]) + 1
self.V = self.V[:8] + enc64(nc)
temp += self._block_encrypt(self.K, self.V)
self._update(ai)
self.reseed_counter += 1
return temp[:n]
'''
struct ccdrbg_vector {
size_t entropyLen;
const void *entropy;
size_t nonceLen;
const void *nonce;
size_t psLen;
const void *ps; /* Personalization String */
size_t ai1Len;
const void *ai1; /* Additional Input */
size_t entropyReseedLen;
const void *entropyReseed;
size_t aiReseedLen;
const void *aiReseed; /* Additional Input */
size_t ai2Len;
const void *ai2; /* Additional Input */
size_t randomLen;
const void *random; /* Returned bytes */
};
'''
if __name__ == "__main__":
entropy = b"\xec\x01\x97\xa5\x5b\x0c\x99\x62\xd5\x49\xb1\x61\xe9\x6e\x73\x2a\x0e\xe3\xe1\x77\x00\x4f\xe9\x5f\x5d\x61\x20\xbf\x82\xe2\xc0\xea"
nonce = b"\x9b\x13\x1c\x60\x1e\xfd\x6a\x7c\xc2\xa2\x1c\xd0\x53\x4d\xe8\xd8"
ps =bytes([0x78, 0x6e, 0x75, 0x70, 0x72, 0x6e, 0x67, 0x04])
ai1 = b""
entropy_reseed = b"\x61\x81\x0b\x74\xd2\xed\x76\x36\x5a\xe7\x0e\xe6\x77\x2b\xba\x49\x38\xee\x38\xd8\x19\xec\x1a\x74\x1f\xb3\xff\x4c\x35\x2f\x14\x0c"
ai_reseed = b""
ai2 = b""
random = b"\x7e\xa8\x9c\xe6\x13\xe1\x1b\x5d\xe7\xf9\x79\xe1\x4e\xb0\xda\x4d"
drbg = CTR_DRBG(entropy, nonce, ps)
r1 = drbg.generate(16, ai = ai1)
drbg.reseed(entropy_reseed, ai = ai_reseed)
r2 = drbg.generate(16, ai = ai2)
#assert r2 == random
print(binascii.hexlify(r1))
entropy = b"\xa3\xa0\x68\x3a\x84\x12\x51\x36\x11\x3c\x1e\x68\x0a\x18\x4c\x0d\x57\x3d\x24\x1d\x9f\xae\x74\xb7\x28\xe5\x8e\xd1\xf0\x1d\x85\x20"
nonce = b"\x8d\xb5\x71\x0e\xd2\x87\xd7\x1d\xd2\xf0\x51\x64\x8e\xd5\x63\xc5"
ps = b""
ai1 = b""
entropy_reseed = b"\x2f\xfa\x80\x67\x39\xc0\x10\x06\x62\x8b\x60\x5e\x18\x73\xe3\x02\x23\xc4\x50\x1b\xc6\x4d\xdb\x53\x18\xed\xb6\xfd\xa4\x59\xc8\x88"
ai_reseed = b""
ai2 = b"\x51\xa9\x24\x03\x30\xed\x0f\x1e\x8b\x18\x70\xb5\x31\x75\xfc\xf1\x0f\x45\x6e\x4e\x4b\x0b\xbf\x89\xa2\x19\xa5\xcb\x00\x5a\x4c\x14"
random = b"\x64\x69\x47\x4a\xf0\x67\x02\x13\x44\xb4\x12\xc8\x9d\xa4\x4f\x97"
drbg = CTR_DRBG(entropy, nonce, ps)
r1 = drbg.generate(16, ai = ai1)
drbg.reseed(entropy_reseed, ai = ai_reseed)
r2 = drbg.generate(16, ai = ai2)
#assert r2 == random
entropy = binascii.unhexlify("ec0197a55b0c9962d549b161e96e732a0ee3e177004fe95f5d6120bf82e2c0ea")
nonce = binascii.unhexlify("9b131c601efd6a7cc2a21cd0534de8d8")
ps = bytes([0x78, 0x6e, 0x75, 0x70, 0x72, 0x6e, 0x67, 0x04])
reseed = binascii.unhexlify("61810b74d2ed76365ae70ee6772bba4938ee38d819ec1a741fb3ff4c352f140c")
drbg = CTR_DRBG(entropy, nonce, ps)
r1 = drbg.generate(16)
drbg.reseed(reseed)
r2 = drbg.generate(16)
print("==========")
print(binascii.hexlify(r1))
print(binascii.hexlify(r2))