corecrypto/ccmode/crypto_test/siv-hmac-test-vector-genera.../siv-hmac.py

254 lines
10 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) (2019,2020) Apple Inc. All rights reserved.
#
# corecrypto is licensed under Apple Inc.s Internal Use License Agreement (which
# is contained in the License.txt file distributed with corecrypto) and only to
# people who accept that license. IMPORTANT: Any license rights granted to you by
# Apple Inc. (if any) are limited to internal use within your organization only on
# devices and computers you own or control, for the sole purpose of verifying the
# security characteristics and correct functioning of the Apple Software. You may
# not, directly or indirectly, redistribute the Apple Software or any portions thereof.
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, hmac
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
import binascii
#There is a lot of debugging print lines that are included below that are commented out. They can be commented back in for future debugging purposes.
def h2s(hs):
return binascii.hexlify(hs)
def encode_length_be(val):
buf=bytearray (b'\x00\x00\x00\x00\x00\x00\x00\x00')
for i in range(0,8):
x = (val >> ((7-i)*8)) & 0xFF
#print "i=="+str(i)
#print str(x)
buf[i]=x
return buf
def hash_update(hmac, data, type):
#def hash_update(hmac, data):
#print "ad:" + h2s(ad)
hmac.update(bytes(data))
el = encode_length_be(len(data))
#print "ad LENGTH ENCODING:" + h2s(el)
hmac.update(bytes(el))
hmac.update(bytes(type))
def create_tag(hm, authenticated_data, nonce, plaintext):
for ad in authenticated_data:
hash_update(hm, ad,'A')
if len(nonce)!=0:
hash_update(hm, bytes(nonce),'N')
if len(plaintext)!=0:
hash_update(hm, bytes(plaintext),'P')
return hm.finalize()
def siv_hmac_enc(key, authenticated_data_prime, nonce, plaintext, tag_length):
#make sure key length is 32 (We support only same size AES and HMAC Keys current code only 128 bit keys)
nonce=bytearray.fromhex(nonce)
key=bytearray.fromhex(key)
#authenticated_data=authenticated_data_prime[:]
authenticated_data=map(bytearray.fromhex, authenticated_data_prime[:])
authenticated_data=map(bytes,authenticated_data)
if (len(key)!=32):
print "Error in key length"
return -1;
#split key: AES First, then HMAC.
aes_key=key[0:16]
hmac_key=key[16:32]
#print "HMAC KEY = " + h2s(bytes(hmac_key))
#print "AES KEY = " + h2s(bytes(aes_key))
#setup HMAC
hm = hmac.HMAC(bytes(hmac_key), hashes.SHA256(), backend=default_backend())
#digest = hashes.Hash(hashes.SHA256(), backend=default_backend())
if (len(authenticated_data)==0 and len (nonce)==0 and len(plaintext)==0):
hm.update(bytes(b'\x01\x02\x03\x04'))
tag=hm.finalize()
return (tag[0:tag_length],'')
#add nonce to the end of authenticated data list
#Generate Tag
#print "Encryption Authenticated Data String"
"""for ad in authenticated_data:
hash_update(hm, ad)
if len(nonce)!=0:
hash_update(hm, bytes(nonce))
if len(plaintext)!=0:
hash_update(hm, bytes(plaintext))
tag=hm.finalize()"""
tag = create_tag(hm, authenticated_data, nonce, plaintext)
#print "tag:" + h2s(tag )
#print "Computed Tag is:" + binascii.hexlify(tag)
iv=bytearray(tag[0:16])
gen_key = rekey(aes_key, iv)
iv[8]&=0x7F
iv[12]&=0x7F
#print "Tag = " + h2s(tag[0:16])
cipher = Cipher(algorithms.AES(bytes(gen_key)), modes.CTR(bytes(iv)), backend=default_backend())
encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext)
#print "Encrypted Plaintext ="+plaintext
encryptor.finalize()
#print "Returned Ciphertext is:" + binascii.hexlify(ciphertext)
return (tag[0:tag_length], ciphertext)
def siv_hmac_dec(key, authenticated_data_prime, nonce, ciphertext, tag, tag_length):
#make sure key length is 32 (We support only same size AES and HMAC Keys current code only 128 bit keys)
nonce=bytearray.fromhex(nonce)
key=bytearray.fromhex(key)
authenticated_data=map(bytearray.fromhex, authenticated_data_prime[:])
authenticated_data=map(bytes,authenticated_data)
if (len(key)!=32):
print "Error in key length"
return -1;
if (len(tag)<16 or len(tag)<tag_length):
print "Tag too small"
return -1;
#split key: AES First, then HMAC.
aes_key=key[0:16]
hmac_key=key[16:32]
iv=bytearray(tag[0:16])
gen_key = rekey(aes_key, iv)
#print "genKey:" + h2s(bytes(gen_key))
iv[8]&=0x7F
iv[12]&=0x7F
#print "Tag = " + h2s(tag[0:16])
cipher = Cipher(algorithms.AES(bytes(gen_key)), modes.CTR(bytes(iv)), backend=default_backend())
decryptor = cipher.decryptor()
plaintext = decryptor.update(ciphertext)
#print "Decrypted Plaintext = " + plaintext
decryptor.finalize()
#print "Decrypted Text is" + plaintext
#setup HMAC
hm = hmac.HMAC(bytes(hmac_key), hashes.SHA256(), backend=default_backend())
#digest = hashes.Hash(hashes.SHA256(), backend=default_backend())
if (len(authenticated_data)==0 and len(nonce)==0 and len(plaintext)==0):
hm.update(bytes(b'\x01\x02\x03\x04'))
ver_tag=hm.finalize()
#print "NULL SPECIAL TAG Computed Tag:" + binascii.hexlify(ver_tag)
if ver_tag[0:tag_length]==tag:
return ('')
else:
print "------------------Tags do not verify-------------------------"
print "Given Tag:" + binascii.hexlify(tag)
print "Computed Tag:" + binascii.hexlify(ver_tag[0:tag_length])
return "Tags do not verify"
#Generate Tag
ver_tag = create_tag(hm, authenticated_data, nonce, plaintext)
#print "Computed Tag is:" + binascii.hexlify(ver_tag)
if ver_tag[0:tag_length]==tag:
return (plaintext)
else:
print "------------------Tags do not verify-------------------------"
print "Given Tag:" + binascii.hexlify(tag)
print "Computed Tag:" + binascii.hexlify(ver_tag[0:tag_length])
return "Tags do not verify"
def rekey (master_key, iv):
zIV = iv[:]
zIV[15] &= 0x7F
keyGenCipher = Cipher(algorithms.AES(bytes(master_key)), modes.ECB(), backend=default_backend())
keyGenEncryptor = keyGenCipher.encryptor()
ciphertext = keyGenEncryptor.update(bytes(zIV))
ciphertext0 = ciphertext[0:8]
#print "zIV0:" + h2s(bytes(zIV))
#print "ciphertext0:" + h2s(bytes(ciphertext0))
zIV[15] += 1
ciphertext = keyGenEncryptor.update(bytes(zIV))
ciphertext1 = ciphertext[0:8]
#print "zIV1:" + h2s(bytes(zIV))
#print "ciphertext1:" + h2s(bytes(ciphertext1))
finalKey = ciphertext0 + ciphertext1
#print "finalkey:" + h2s(bytes(finalKey))
return finalKey
""" Q[block_size-1] &= 0x00;
uint8_t zero_pad[_CCMODE_SIV_HMAC_KEYSIZE(ctx)], temp_key[_CCMODE_SIV_HMAC_KEYSIZE(ctx)];
memset(zero_pad, 0, _CCMODE_SIV_HMAC_KEYSIZE(ctx));
rc = ccctr_one_shot(ctr, _CCMODE_SIV_HMAC_KEYSIZE(ctx) / 2, _CCMODE_SIV_HMAC_CTR_KEY(ctx), Q, _CCMODE_SIV_HMAC_KEYSIZE(ctx), zero_pad, temp_key);
size_t base = block_size/2;
for (size_t i = 0; i < (_CCMODE_SIV_HMAC_KEYSIZE(ctx)/block_size)/2; i++ ){
for (size_t j=0; j<block_size/2; j++){
temp_key[base+j]=temp_key[base+block_size+j];
}
base+=block_size;
}
"""
def ha2s(ad):
weird_index_Names=["","2"]
i=1
for s in ad:
if i<=2:
middle=weird_index_Names[i-1]
else:
middle=str(i)
print "\t.aData"+middle+"Str=\""+s+"\","
i=i+1
return
"""
.keyStr="7f7e7d7c7b7a79787776757473727170404142434445464748494a4b4c4d4e4f",
.aDataStr="00112233445566778899aabbccddeeffdeaddadadeaddadaffeeddccbbaa99887766554433221100",
.aData2Str="102030405060708090a0",
.init_ivStr="09f911029d74e35bd84156c5635688c0",
.ptStr="7468697320697320736f6d6520706c61696e7465787420746f20656e6372797074207573696e67205349562d414553",
.ctStr="7bdb6e3b432667eb06f4d14bff2fbd0fcb900f2fddbe404326601965c889bf17dba77ceb094fa663b7a3f748ba8af829ea64ad544a272e9c485b62a3fd5c0d"},
"""
def one_go_test(master_key, ad, iv, plaintext, tag_length):
(t,c) = siv_hmac_enc(master_key, ad, iv, plaintext, tag_length)
result = siv_hmac_dec(master_key, ad, iv, c, t, tag_length)
if (result==plaintext):
print "{"
print "\t.keyStr = \"" + master_key + "\","
ha2s(ad)
print "\t.init_ivStr = \"" + iv + "\","
print "\t.ptStr = \""+ h2s(plaintext) +"\","
print "\t.ctStr = \""+ h2s(t)+h2s(c)+"\","
print "\t.tagStr = \""+ h2s(t) +"\","
print "},"
else:
print "Decryption Error!!!!"+plaintext+result
return
master_key = b'01020304050607080102030405060708f1f2f3f4f5f6f7f8f1f2f3f4f5f6f7f8'
def perform_testsdef():
one_go_test(master_key, [],'','plaintext only test', 20)
one_go_test(master_key, [], b'a1a2a3a4', 'plaintext only test', 20)
one_go_test(master_key, [b'b1b2b3b4'], b'a1a2a3a4', 'plaintext only test', 20)
one_go_test(master_key, [b'1234',b'ff00ff00'],b'a1a2a3a4a5a6a7a8a9','text to encrypt', 20)
one_go_test(b'7f7e7d7c7b7a79787776757473727170404142434445464748494a4b4c4d4e4f', [b'00112233445566778899aabbccddeeffdeaddadadeaddadaffeeddccbbaa99887766554433221100',b'102030405060708090a0'],b'09f911029d74e35bd84156c5635688c0',"7468697320697320736f6d6520706c61696e7465787420746f20656e6372797074207573696e67205349562d414553",30)
one_go_test(b'7f7e7d7c7b7a79787776757473727170404142434445464748494a4b4c4d4e4f', [b'abcdef'], b'',"This is a plaintext test", 32)
one_go_test(b'7f7e7d7c7b7a79787776757473727170404142434445464748494a4b4c4d4e4f', [], '', "Thus is a plaintext test", 32)
one_go_test(master_key,[],b'',b'',20)
return
perform_testsdef()